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An optimal design of smart charging station for personal mobility devices 

using multi-level bidirectional DC-DC converter 

Abstract 

Shrewd charging stations are important for PMDs like electric bikes, e-bicycles, and other 

convenient electric vehicles. These devices require regular charging to maintain their battery life 

and ensure their efficient operation. A smart charging station provides safe, convenient, and 

efficient charging solution for these devices, which can be easily accessible for users. The smart 

charging station aims to overcome the limitations of existing charging systems for PMDs by 

providing a solution that can meet There are voltage requirements for the majority of e-mobility 

devices, but charging current ripple is low. To achieve this, we design a deep multi-graph neural 

network (DMGNN) enabled multi-level bidirectional DC-DC converter to interconnect DC 

micro-grid with DC fast charging stations which is the capability to address voltage unbalance 

issues and effectively control the bidirectional power flow.Moreover, it outperforms the existing 

multi-level converters with High efficiency and a wide range of charging voltages in the low 

output voltage region. Additionally, a modified Emperor Penguin Optimization (MEPO) 

algorithm is applied to the optimization problem in order to precisely identify a number of 

decision variables involved in the creation of the most effective charging stations.At last, to 

affirm the viability of the proposed charging framework, we led reproductions and trials, 

including the improvement of a model charging framework. 

Keywords:smart charging station, personal mobility devices, DC-DC converter, multi-level 

converter 

1. Introduction 

Personal mobility devices (PMDs) are small, lightweight, and portable electric vehicles designed 

for personal transportation [1]. They include electric scooters, e-bikes, hover boards, and other 

similar devices that are increasingly popular as a means of short-distance transportation in urban 

areas. These devices are often powered by rechargeable batteries and can be ridden on sidewalks, 

bike lanes, and some roads, depending on local regulations [2]. PMDs are used in a variety of 
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real-time scenarios, particularly in urban environments, as they offer an efficient and 

environmentally friendly alternative to traditional means of transportation. For example, e-bikes 

and electric scooters are popular for short trips, such as commuting to work, running errands, or 

traveling short distances within a city. They can help reduce traffic congestion and air pollution, 

as well as provide a cost-effective and convenient mode of transportation. Additionally, PMDs 

can be used in large facilities such as airports, theme parks, and universities, where they are often 

used for short trips between buildings or to cover large distances quickly. They are also 

increasingly used in logistics and delivery services, where they provide a practical and cost-

effective solution for last-mile delivery [3]. PMDs are typically powered by rechargeable 

batteries that have a limited lifespan. This means that users need to regularly charge their devices 

to maintain their operability. As PMDs become more popular, the availability of charging 

infrastructure may become an issue. In many cases, users may not have access to convenient 

charging stations, which can limit the range and usability of their devices [4][5]. PMDs can be 

relatively fast-moving and may not always be visible to other road users, which can create safety 

concerns. In addition, some PMDs may not be designed to handle uneven or challenging terrain, 

which can increase the risk of accidents. The increasing popularity of PMDs has led to a range of 

regulatory issues, including questions around where they can be used, who can use them, and 

how they should be regulated [6]. Overall, addressing these problems is essential to ensure the 

safe and effective use of PMDs in real-world scenarios. 

A charging station for PMDs [7][8] is a specialized facility that allows users to recharge their 

devices. These charging stations are typically equipped with necessary electrical infrastructure 

and charging ports that are compatible with a variety of PMDs, such as e-scooters and e-bikes. 

The charging station may be owned and operated by the manufacturer of the PMD or by a third-

party service provider [9]. Charging stations for PMDs play a critical role in enabling the 

widespread adoption of these devices, as users need to be able to charge their devices 

conveniently and reliably. They also help to address the issue of limited battery life and range, 

which can be a significant barrier to the widespread use of PMDs [10][11]. The design of a 

charging station for PMDs is typically driven by factors such as the power requirements of the 

devices, the charging time required, and the number of devices that need to be charged 

simultaneously [12]. Some charging stations may also incorporate additional features, such as 

Wi-Fi connectivity or the ability to track the location of the devices being charged [13]. 



3 
 

One of the significant challenges [14]-[16]in the widespread adoption of PMDs is their charging 

infrastructure. PMDs such as electric scooters and e-bikes require frequent charging to maintain 

their battery life and ensure efficient operation. However, the lack of a standardized charging 

infrastructure and the diversity of battery technologies and charging requirements for different 

types of PMDs have resulted in a range of challenges. One of the significant challenges is the 

lack of charging stations in public areas, which leads to range anxiety and limits the usefulness 

of these devices for daily commuting [17]. Furthermore, the lack of standardization of charging 

protocols can cause compatibility issues between charging stations and PMDs, making it 

challenging for users to find charging points and causing unnecessary delays. In addition, many 

charging stations only support slow charging, which can take several hours to charge the PMD 

fully, limiting the usability of the devices in areas where the charging infrastructure is not yet 

fully developed. Another significant problem is the lack of safety and security of charging 

stations. Unauthorized access to charging stations and the theft of PMDs from charging stations 

is a significant concern for users[18]. Additionally, poorly designed charging stations can pose 

safety risks due to improper installation, maintenance, and monitoring. Addressing these 

problems is essential to the widespread PMDs, and developing efficient, standardized, safe, and 

accessible charging infrastructure is critical to their success.A smart charging station [19] 

provides a safe, convenient, and efficient charging solution for PMDs, which can be easily 

accessible for users. A well-designed charging station can address the shortcomings of existing 

charging systems for PMDs, such as limited charging voltage range, low charging current ripple, 

and poor power quality. Smart charging stations can also provide additional features such as real-

time monitoring of charging status, remote management, and user authentication [20]. This 

ensures that the charging process is secure and reliable, and helps to prevent any potential 

damage to the battery or device. Overall, smart charging stations for PMDs are critical to 

ensuring the efficient and sustainable operation of these devices. They offer a solution to the 

problem of insufficient charging infrastructure and help to promote the widespread adoption of 

PMDs as a clean and efficient mode of transportation. 

Our contributions.Our study presents a novel approach towards designing an optimal smart 

charging station for personal mobility devices, utilizing a multi-level bidirectional DC-DC 

converter. The main objective of proposed work is to make the charging system more effective 
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and efficient in providing a safe, convenient, and efficient charging solution for PMDs. The key 

contributions of our proposed work are outlined below. 

1. The proposed smart charging station uses a multi-level bidirectional DC-DC converter to 

interconnect the DC micro-grid with the DC fast charging stations. The converter is 

designed to address voltage unbalance issues and effectively control the bidirectional 

power flow. To improve the performance of the converter, a deep multi-graph neural 

network (DMGNN) is used to optimize the modulation strategy. The DMGNN is capable 

of learning complex relationships between the input and output variables and providing 

better accuracy in predicting the optimal modulation strategy. By using DMGNN, the 

proposed charging system can achieve higher efficiency and lower charging current 

ripple, which is critical for maintaining the battery life of PMDs. 

2. Modified emperor penguin optimization (MEPO) algorithm is used to solve optimization 

problem of accurately determining the many decision variables during the design of 

optimal charging stations. It is used to find the optimal values for decision variables such 

as the number of converter levels, switching frequency, and modulation index. By using 

the MEPO algorithm, the proposed charging station can achieve higher efficiency and 

lower cost. 

3. Simulations were carried out to test the performance of the proposed charging system 

under different conditions, such as different charging voltage and current levels, various 

types of PMDs, and different charging modes. The simulations were performed using 

software such as MATLAB and Simulink, and the results were analyzed to evaluate the 

charging efficiency, voltage stability, and ripple current of the charging system. 

This paper is structured as follows: Section 2 presents an overview of the related research on 

charging stations for PMDs using DC-DC converters. In Section 3, we describe the problem 

methodology and system design of our proposed work. The detailed working process and steps 

of the proposed system, along with the mathematical models used, are explained in Section 4. 

Section 5 presents the simulation results and a comparative analysis of our proposed charging 

system with existing charging systems. Finally, Section 6 concludes the paper. 

2. Related works 
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In this section, we provide a comprehensive understanding of the state-of-the-art research related 

to charging stations for PMDs. It reviews the recent literature on the topic, including the latest 

advancements in charging station technology, multi-level converters, and techniques used for 

designing charging stations.Table 1 presents a summary of the research gaps identified from 

previous works. 

Gabbar et al. [21] proposed to support vehicle electrification, cutting-edge computational 

intelligence technology employs the Enhanced Artificial Immune System (EAIS).To maintain 

load balance and avoid grid failure, FFCS is integrated with utility networks, resulting in lower 

energy costs and increased use of clean energy sources. To improve the FFCS's response, EAIS 

is used as an advanced optimization technique to fine-tune its dynamic 

parameters.Lymperopoulos et al. [22] introduced a progressive control component that utilizes 

the capacity framework of a power transport quick charging framework to offer an extra support 

(With respect to) the power lattice. The aging, technical viability, and economic viability of 

storage grid batteries were examined by the authors. Despite the Swiss TSO's regulatory 

requirements and the fast-charging system's primary purpose of fast-charging buses, the control 

mechanism demonstrated substantial flexibility in its current configuration. The authors also 

found that providing AS to the storage network could significantly decrease the energy-related 

operating costs of the buses. Moreover, the study showed that providing AS did not have a 

considerable effect on the batteries' aging, indicating that it is a feasible service to integrate 

without impacting the system's lifetime. 

Hou et al. [23], a decentralized charging scheduling system is proposed for standalone charging 

stations using a formulation of mixed-integer linear programming (MILP). This resolves the 

issue of consumers' limited charging space and window options. A parallel machine scheduling 

model is given a continuous solution by mathematical modeling, which incorporates decision 

variables and constraints. The toll planning problem is solved with an iterative bidding system 

that is based on game theory and mechanism design. The numerical experiments with an average 

efficiency of 85% in revealing partial information demonstrate the system's effectiveness in 

terms of game-theoretic properties like individual rationality and responsiveness to agents.Tao et 

al. [24] proposed a full-bridge DC/DC converter with a synchronous rectifier and two clamp 

diodes. On the secondary side of the transformer, terminal diodes were used to reduce switching 
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device losses and suppress voltage fluctuations while also providing switching power to the 

trailing leg. They dissected the functioning standard and control strategy for the converter and 

determined the misfortunes of the exchanging gadget. The converter meets the requirements of 

the integrated charger application by achieving 95 percent efficiency at 20-100% rated load and 

halving the voltage fluctuations on the secondary side of the transformer. 

Li et al. [25] proposed an effective energy move technique between the lattice and an energy 

stockpiling framework and an enormous accusing station prepared of photovoltaic boards will 

help EV clients and aggregators. In order to direct PV panels' intermittent system operation, they 

developed power assignment problems. Based on the aggregator's and EV users' overall 

satisfaction, an optimized contract capacity algorithm is created for actual operations. 

Reenactment results show that this calculation gives a few consistently ideal agreement limit 

sizes contrasted with existing agreement limit power calculations. In Mehrjerdi's study [26], the 

focus is in Microgrid Long-Term Dynamic Capacity Planning. A microgrid is furnished with 

different limits like breeze, sun oriented, miniature gas turbine and energy stockpiling 

framework. As grid vehicles, EVs in a charging station can feed power into the microgrid or alter 

charging speed and duration, making the station a more adaptable load or generation device. A 

short-term project is in the process of optimizing the hourly operation of an energy storage 

system, electric car charging station, and micro turbine. The short-term operation of dispatch 

resources can effectively contribute to long-term cost reduction planning and reduce planning 

costs by 28%. 

Bayati et al. [27] presented two non-dissipative pulsed current DC-DC and pulsed voltage DC-

DC battery charging systems for EV charging stations. To charge and discharge electric vehicles 

at various voltage levels, the previous design made use of a well-designed control system and a 

current recirculation unit to generate a negative pulse current. The pulsed voltage method 

minimizes sudden changes in battery power, making the latter design ideal for high-power 

applications. The precise design of the control systems in both models ensures that electric 

vehicles can be charged and discharged effectively.Practical results show that these designs work 

well and produce less output power ripples and fluctuations than other approaches. Balasundar et 

al. [28] have proposed Electric vehicle fixed bi-directional charging station with a lithium-ion 

battery, distribution static compensator, three-phase bi-directional AC-DC converter, and bi-
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directional chopper. Through bidirectional converters, the system transfers power from the grid 

to the vehicle and back again. A discrete current and DC voltage control method is used to 

control a three-phase bidirectional inverter. The bidirectional chopper is controlled by a current 

control strategy with multiple stages.The framework is assessed utilizing PI and ANFIS 

regulators in light of DC voltage of appropriation static compensator and lattice current music. 

The source current THD is reduced and the DC circuit voltage is effectively controlled by the 

ANFIS controller. EV batteries are shielded from deep discharge and overcharging with a 

method of multi-stage DC control. 

Fescioglu-Unver et al. [29] have developed An EV charging station's resources are controlled by 

a model called FC-EXP using feedback control. FC-EXP's goal is to maintain the target ratio 

between the delay times of high and normal priority vehicles while simultaneously providing 

priority service to high priority vehicles. A charging station sets different dormancy targets in 

light of its evaluating strategy, and FC-EXP changes asset distribution progressively to meet 

these objectives. The model is capable of self-monitoring and can be demonstrated to respond to 

unforeseen events changes in the environment faster than traditional express service models. 

Numerical analysis indicates that FC-EXP is effective in achieving its goals both in real-time and 

in steady-state conditions.Leal et al. [30] have introduced a DC-DC converter with a step-down 

bidirectional interleaved design that can be used in electric vehicle charging stations and 

supports both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) technologies.The EV battery's 

current ripple, which can either consume or generate power for the microgrid, is reduced using a 

coupling technique. Using the small signal technique, EV battery charging and discharging are 

controlled by PI controllers. The experimental outcomes affirm that the equipment arrangement 

used to test the control design and inverter activity is protected, practical and dependable. This 

arrangement permitted high current testing without compromising the high current burdens of a 

genuine EV battery. 
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Table 1 Summary of Research Gaps 

Ref. Methodology Techniques used Findings Research gaps 

[21] Flywheel fast charging 

system (FFCS) 

Enhanced artificial 

immune system (EAIS) 

Torque, angular speed 

and energy storage 

The DC-DC converter aspect is not 

the main focus. 

[22] Fast-charging stations for 

electrical buses 

ABB and TOSA State of battery health The source current THD level does 

not meet the necessary standards. 

[23] E-vehicle charging station 

scheduling 

Mixed-integer linear 

program (MILP) 

Efficiency, information 

revelation 

This may result in power quality 

issues or instability. 

[24] Onboard charging for E-

vehicle 

Phase-shifted full-bridge 

DC/DC converter 

Transformer ratio, 

switching frequency 

Charging rates may vary due to 

fluctuations in battery temperature. 

[25] Storage system for E-

vehicle charging 

Time-of-use adjustment 

method 

Contract capacity, 

charging cost 

The devices are cumbersome to 

carry due to their size and weight. 

[26] Dynamic and multi-stage 

capacity expansion 

Deep learning with 

optimization algorithm 

Planning cost, 

Expansion cost 

They are not well-suited for use in 

PMDs. 

[27] DC–DC stage of E-

vehicle charging stations 

Two battery charging 

systems 

AC-side terminal 

current 

There is no emphasis on 

minimizing prediction errors. 

[28] Enhanced bidirectional E-

vehicle charging station 

Multi-step current  

control strategy 

THD, source and load 

currents 

There is a significant amount of 

switching loss and noise 

interference. 

[29] Resource management 

model for charging station 

Feedback controlled 

express station(FC-EXP) 

Relative delay Soft switching cannot be achieved 

under light loads. 

[30] Converter for 

gridtovehicleand vehicleto 

grid 

Cascaded interleaved 

DC–DC converter 

Flexibility, converter 

behavior 

The use of pulse voltage can cause 

pulse current in the battery 

impedance. 
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3. Problem methodology and System design 

3.1 Research Gaps 

A multi-level charging topology is needed for E-Mobility charging stations due to the increasing 

demand for fast and convenient charging of electric vehicles (EVs). With the growing popularity 

of EVs, it is becoming increasingly important to have charging infrastructure that can meet the 

changing requirements of a large number of EVs. Multi-level charging topology allows multiple 

EVs to be charged simultaneously at different power levels, which can reduce the charging time 

and improve the utilization of charging stations. It also provides flexibility in charging options 

for different types of EVs, as some may require faster charging than others. Additionally, multi-

level charging topology can help manage the power demand and reduce the load on the power 

grid by dynamically adjusting the charging rates based on the availability of grid power. Overall, 

multi-level charging topology is essential for meeting the changing needs of a growing fleet of 

EVs and supporting the transition to a sustainable transportation system. Lim et al. [31] 

introduced a multi-level charging topology the minimal expense utilization of an air 

conditioner/DC converter in large scale manufacturing empowers the power unit to meet the 

different charging needs of e-portability gadgets. In contrast to conventional charging systems, 

this one produces less charging current ripple and reduces the sensitivity of input current to THD 

in relation to output power and voltage. The staggered charging framework's switching method 

ensures low power loss, reduced switching device voltage stress, and low EMI noise generation. 

The effectiveness of the charging system was confirmed through simulations using PSIM and 

experimental testing of a 1200-W charging system. 

There are several problems that occur in EV smart charging stations, including: PMDs smart 

charging stations can experience overloading, particularly during peak hours, which can lead to 

slow charging, reduced efficiency, and potential damage to the station [21]. If the charging 

station is not designed efficiently, it can result in power losses [22][23], which can increase the 

overall charging time and reduce the station's reliability. Not all electric vehicles have the same 

charging requirements, which can make it difficult for charging stations [22][25] to be 

universally compatible with all EV models [24]. This can cause inconvenience for EV owners 

and reduce the utilization rate of charging stations. Long charging times can be a major issue, 
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particularly for drivers who are in a hurry. This can lead to frustration, reduced station 

utilization, and a negative impact on the overall EV charging experience [26][29]. The cost of 

installing and maintaining EV smart charging stations can be high, which can deter organizations 

and individuals from investing in them [23][26]. However, it also notes that the charging systems 

for PMDs are insufficient compared to those available for EVs. This implies that there is a need 

for the development of charging infrastructure that is specifically designed to cater to the 

charging requirements of PMDs, which is currently lacking [28]. The use of a Multi-Level 

DC/DC Converter in EV smart charging stations can address some of these problems by 

increasing charging efficiency, reducing charging time, and providing compatibility with 

different EV models [30]. However, the multi-level converters face some problems related to 

complex control, and high number of components. Based on the identified research gaps in the 

area of smart charging stations for personal mobility devices, the following research objectives 

can be proposed: 

1. To design and develop a smart charging system that can accommodate different types of 

PMDs. 

2. Streamline the charging system to decrease the charging time and increment the 

effectiveness of the charging framework. 

3. To design an efficient multi-level converter to regulate the DC voltage and current to 

ensure safe and efficient charging of the EV battery. 

4. To ensure the safety of the charging system by implementing appropriate measures to 

prevent overcharging and overheating. 

5. To reduce the reliance on fossil fuels and minimize the negative impact on the 

environment by incorporating renewable energy sources into the charging system. 

6. To develop a communication network between the charging station and PMDs to enable 

real-time monitoring and control of the charging process. 

7. To validate the smart charging system's effectiveness in meeting PMDs' needs by 

evaluating its performance through simulations and experiments. 
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Fig. 1 Overall system design of our proposed work 

i, j, k→m, n 

PI PI PWM 
+ 

- 

+ 
- 

+ + 

- - 

PWM PI 
+ 

- 

A*
µ V*

DC 

VDC Aµ 

Ai, Aj, Ak 

Am, An 

A*
m, A*

n 

ADC 

VDC 

Aµ 

Vµ 

Grid Converters 

AC-DC converter 

Multi level bidirectional 

DC-DC converter 

Personal mobility 

devices 

Deep multi-graph neural 

network (DMGNN) 
MEPO for control 

value selection 



12 
 

3.2 System design of proposed work  

The DC supply voltage for charging small electric vehicles like electric scooters must be less 

than 60 V, according to Korea's technical regulations for products and components in the 

electrical and telecommunications industries. A smart charging system was proposed to meet the 

requirement for charging systems that can generate voltage greater than 60 V to charge E 

mobility equipment of varying voltages.As depicted in Fig. 1, the framework uses staggered 

bidirectional DC converters associated in series, where the result voltage Vµ of every converter 

covers.A voltage that can drive a general gate amplifier is used for each level of the converter's 

input voltage, Ai, Aj, and Ak. The system configuration uses a field-effect transistor (FET) 

switch to make use of the gate amplifier voltage as the power supply voltage, connect An to the 

negative terminal of the input power supply Am. The proposed staggered converter's result 

voltage can be constrained by the state and obligation proportion of the switch arranged in the 

framework. In the proposed smart charging station for PMDs, a DMGNN is used to enable the 

multi-level bidirectional DC-DC converter to interconnect the DC micro-grid with the DC fast 

charging stations. DMGNN helps to address voltage unbalance issues and effectively control the 

bidirectional power flow. The DMGNN is used to predict the voltage of each level of the 

staggered converter and balance the voltage among them, thereby improving the converter's 

performance. Additionally, the DMGNN is used to determine the optimal duty ratios of the 

switches in the converter, which helps to achieve higher efficiency and a wider charging voltage 

range in the low output voltage region. Overall, the use of DMGNN in the proposed charging 

system helps to achieve higher efficiency, lower charging current ripple, and a wider charging 

voltage range. The modified emperor penguin optimization (MEPO) algorithm is used in this 

case to solve the optimization problem of accurately determining the many decision variables 

during the design of optimal charging stations. MEPO algorithm is particularly suitable for this 

case because of its ability to optimize a large number of variables simultaneously while ensuring 

the optimal solution is found within a reasonable time. Moreover, it has been shown to be 

effective in solving complex engineering problems with multiple constraints and objectives. By 

using MEPO, the proposed charging system can be optimized to ensure It achieves high 

efficiency while maintaining a low charging current ripple and meeting the voltage requirements 

of a variety of E-mobility devices. 
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4. Proposed Methodology 

In this section, we will introduce the proposed methodology for our smart charging system. 

Firstly, we will explain the structure of the multi-level bidirectional DC-DC converter and its 

activities. We will then discuss the control system utilizing the DMGNN technique. Finally, we 

will explain the working process of the MEPO algorithm, which is an essential component of our 

proposed methodology. 

4.1 Multi-level bidirectional DC-DC converter 

The proposed smart charging system for PMDs makes use of a multi-level bidirectional DC-DC 

converter that consists of independent converters connected in series. The result voltage of every 

converter is covered to accomplish the required charging voltage. A voltage that can drive a 

general gate amplifier is used for each level of the converter's input voltage. The system 

configuration uses a field-effect transistor (FET) switch in the negative terminal of the input 

power supply to use the gate amplifier voltage as the power supply voltage. Figure depicts the 

structure of a bidirectional DC-DC converter with multiple levels. 2. B1, B2, B3, and B4 are the 

primary switches on the weight side, which empower the buck-support activity through various 

information force of each level in the staggered converter addressed by VjMLDC, and the 

amount of the voltage as per the exchanging condition of the staggered converter addressed by 

VMLDC. The energy that can be transferred from the source to the storage system determines 

when the switches turn ON and OFF, as well as the effort required to implement a unidirectional 

current flow between the connected switching devices. A buck-boost converter is connected in 

series by the multi-level bidirectional converter [31]. Consequently, the buck converter's 

characteristics were first investigated. A regular buck converter's voltage, recurrence, and 

obligation proportion decide the inductor current wave. The inductor current ripple (Mr) is 

determined by the voltage ripple of the output voltage and the current ripple of the inductor (L). 

Assuming the ongoing AL, the current ripple caused by the inductor, is what is meant to be 

coursing through it. AL is expressed as follows. 

( )CCV
L

Mr
jAL −= 1       (1) 
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Fig. 2 Structure of multi-level bidirectional DC-DC converter 
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Similarly, the output voltage Voutis connected with the information voltage Vin and the 

obligation factor d. The voltage wave of the result voltage is relative to the result current and 

equivalent to the series opposition of the inductor. The ripple is smoothed out by a capacitor on 

the output side, whose value is determined by the allowable ripple and load current. It is essential 

to comprehend these characteristics conduct of the buck-help converter and planning the 

staggered bidirectional converter. 

( )

CL

MCCV rj

AVout 8

1 2−
=      (2) 

The proposed multi-level converter's current and voltage the converter's duty ratio and number of 

levels in comparison to a standard determine ripple buck-boost converter. When the number of 

levels in the proposed converter equals the maximum ripple value in a conventional buck-boost 

converter, this is the maximum ripple condition. During the charging mode, the proposed 

converter acts as a reducing converter, transferring energy via a DC voltage transfer function 

from the DC bus to the storage units. The multi-level converter's input voltage, which is made up 

of N numbers, is called VjMLDC. It is determined how many levels, or NMLDC, are necessary 

to generate the output voltage, Vout, VjMLDC, derived from the input voltage. The number of 

converters that use pulse width modulation (PWM) between 0 and duty 1 is referred to as 

NMLDC. If the converter's switching state is duty, the number of converters performing PWM is 

not counted. The duty ratios of the output voltages, Vout and CMLDC, can be expressed using 

this definition. 

( )( )MLBDMLBDMLBDjMLDCout NCNVV 1−+=     (3) 
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
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


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
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outMLBD
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NV
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1
     (4) 

The current ripple generated by each level in the multi-level converter can be canceled out by 

using the overlapping effect of the output voltages from each level. When the output voltage of 

one level decreases, the output voltage of the adjacent level increases, and the two voltages 

overlap each other, resulting in the cancellation of the current ripple. This overlapping effect AL
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is achieved by controlling the duty ratio of each switch in the converter, which adjusts the output 

voltage of each level.  
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   (5) 

By adjusting the duty ratio, the overlapping effect can be maximized, and the current ripple can 

be minimized. This results in a smoother output voltage and a more efficient charging process for 

E-mobility devices. 

4.2 Bidirectional power flow controller using DMGNN 

The deep multi-graph neural network (DMGNN) is used to control the bidirectional power flow 

in the proposed multi-level bidirectional DC-DC converter. DMGNN technique is used to design 

a control system that can effectively address voltage unbalance issues and keep the charging 

current ripple at a low level. It allows for the optimal operation of the converter, taking into 

account various parameters such as the input and output voltages, the switching states of the 

converters, and the duty ratios of the output voltages. DMGNN is trained on a large dataset of 

simulation results, allowing it to accurately predict the optimal control parameters for a given set 

of inputs. This approach results in a highly efficient and effective control system for the 

proposed charging station, capable of charging a range of E-mobility devices while maintaining a 

low current ripple. DMGNN is a type of neural network architecture used for tasks that involve 

structured data with multiple graphs. DMGNNs can be thought of as an extension of graph 

neural networks (GNNs) that can handle multiple graphs, where each graph represents a different 

aspect or relationship in the data. DMGNNs use multiple graph convolutional layers to extract 

features from each graph independently, and then combine them to make a final prediction. Each 

graph convolutional layer operates on a single graph, using the graph's adjacency matrix to 

compute node representations. By stacking multiple such layers and aggregating the node 

features across graphs, DMGNNs can learn complex relationships between different aspects of 

the data. Specifically, the DMGNN is used as a controller to regulate the output voltage and 

current of the converter in both the buck and boost modes. The DMGNN takes the input signals 

of the converter, such as the output voltage, current, and reference voltage, as well as the 
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switching states of the converter as its inputs. It then processes these inputs using multiple layers 

of graph neural networks, which allows it to learn the nonlinear relationships between the inputs 

and outputs of the converter. DMGNN is trained using a dataset that consists of input-output 

pairs generated by simulating the behavior of the converter under various operating conditions. 

During training, the DMGNN adjusts its parameters to minimize the difference between its 

predicted outputs and the actual outputs of the converter. Once the DMGNN is trained, it can be 

used to control the converter in real-time by predicting the optimal switching states based on the 

current operating conditions. This allows for precise and efficient control of the converter, even 

under varying load and input conditions. DMGNN typically consists of multiple layers, each of 

which performs a specific type of computation. The exact number and types of layers used can 

vary depending on the specific application and requirements. However, in general, a DMGNN 

consists of three main types of layers: graph convolutional layers, pooling layers, and fully 

connected layers. 

• Graph convolutional layers are used to perform convolutional operations on the input 

graph. They take the node features and the graph structure as inputs and produce a set of 

node features as output. 

• Pooling layers are used to aggregate the node features over different regions of the input 

graph. They take the node features and the graph structure as inputs and produce a set of 

aggregated node features as output. 

• Fully connected layers are used to perform linear transformations on the aggregated node 

features. They take the aggregated node features as inputs and produce a set of output 

features that can be used for classification or regression. 

The mathematical model of DMGNN is start with the dimension of the data features, which can 

be optimizes as follows.  
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where outlstmA _ and inputA  are the input and output of the DMGNN which includes the number of 

hidden layers, data flow and settings. To defines the MinMaxScaler normalization by using 

following pre-processing.  

MinMax

MinI
I

aa

aa
a

−

−
=      (7) 

where Maxa  and Mina are the maximum and minimum values of the dataset input vector. Then, we 

utilize the GNN with double XG boosting for hidden layer design and optimization of it.  First, 

we formulate the mathematical theory behind it and assume an input GW  , given features,

gwRl  , represented as follows:  

 gQWPQPbl = 1,1|),(     (8) 

where ),( QPb is the intensity of the input QP, and, given the KK gw   filters, K is a convolution 

that uses the input, l, and the filter K to produce a feature map B. On the K input, a filter with a 

padding value of L phase KT and zero sweeps. 
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The input applies a convolution operation and an additional offset to the feature map at each 

convolutional layer indexed by L, which is indexed by the jth feature )}.(,...,1{ lFF map output 
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where F is the magnitude filter, the shift matrix, and the activation function Xj
ifor the rectified 

kj,ilinear unit 2Wk+1×2gk+1 of ReLU. Thus the result components of layer l for the element map 

at position.  
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The output of the layer is further modified by a concatenation layer: It prevents the output from 

being overfitted and reduces sampling. For instance, a pooling process with steps and a pooling 

window is used to process an output from the previous layer that has an activation function f, 

which is a pooling function.  
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The following is how the maximum pooling window is affected by the optimal function:  
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The final layer of the DMGNN architecture is the fully pooled layer, whose input is the column 

vector because the output of the pooling layer before it is extended. Algorithm 1 describes the 

working steps involved in the process of bidirectional power flow controller using DMGNN. 

Algorithm 1 Bidirectional power flow controller using DMGNN  

Input      : Aµ, A*
µ, PWM signal and termination condition 

Output   : Power flow controller 

1 Initialize MainNet with random values 

2 
Define the features data dimension 








=

2

)(
)( _

input

outlstm

ADim
IntADim  

3 Compute MinMax scalar normalization  

4 While j=0 Do 

5 For 1=s , S do 
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6 Define input range for input layer gwRl   gQWPQPbl = 1,1|),(  

7 
Compute output of the previous layer 
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8 Compute max-pooling window of dimension 

( ) ( )1/)(1/)()( ,

)( +−+−= qKqKQP

l

j TgGTwwaDN  

9 End if  

10  Update the final values 

11  End  

4.3 Compute decision variables using MEPO algorithm 

The modified emperor penguin optimization (MEPO) algorithm is a metaheuristic optimization 

algorithm that is used in this work to advance the control boundaries of the staggered 

bidirectional DC converter. The fundamental job of the MEPO calculation is to find the ideal 

qualities for the control boundaries that can limit the mistake between the real result voltage and 

the ideal result voltage of the converter. MEPO has inspired by the behavior of emperor penguins 

in Antarctica, where they use different strategies to communicate and navigate in a harsh 

environment. The algorithm works by simulating the movements and interactions of penguins in 

the search for food and mates. MEPO algorithm is known for its ability to find the global optimal 

solution with high degree of accuracy, even in complex and high-dimensional optimization 

problems.  

In this work, MEPO is used to optimize the duty ratios and switching frequency of the multi-

level bidirectional DC-DC converter. MEPO algorithm consists of several steps. First, an initial 

population of potential solutions is generated randomly. Each solution is represented as a set of 

parameters for the DMGNN control system. These parameters include weights, biases, and 

connection strengths of the neural network. Next, the fitness of each solution is evaluated based 

on its ability to control the multi-level bidirectional DC-DC converter. It is done by simulating 

the behavior of the converter using the current set of parameters and measuring the performance 

of the control system in terms of several performance metrics.After the fitness evaluation, a 

selection process is performed to choose the best-performing solutions. The selected solutions 

are then used to generate new candidate solutions through hybrid and transformation tasks. 

Mutation, on the other hand, is the process of combining two solutions to create a new one. 
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randomly changing the parameters of a solution. The new candidate solutions are evaluated for 

their fitness, and the process is repeated for a certain number of generations or until a satisfactory 

solution is found. The algorithm also includes several parameters that control the selection 

pressure, mutation rate, and crossover rate. MEPO algorithm has been shown to be effective in 

optimizing the parameters of the DMGNN control system for the multi-level bidirectional DC-

DC converter. It allows for efficient training of the control system, and the resulting solutions are 

often superior to those obtained through other optimization methods.Assume that the wind 

gradient and velocity is compute as follows.  

 =⊥       (12) 

 oR +=       (13) 

where  is random vector and  is an imaginary constant. The penguin's position will change 

randomly based on the penguin's best position. A penguin in the middle of an L-shaped polygon 

fits your best. To survive the winter, penguins conserve heat in groups. If polygon radius (R) is 

greater than 1, temperature (t) is assumed to be set to 0. Otherwise, temperature (t) is set to 1. 

The difference between the pool temperature and the temperature outside the pool boundary (T) 

is calculated as follows. 
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Where x is the current frequency and t is the temperature profile. The key to finding other 

emperor penguins is the best emperor penguin. All other Imperial Penguin' positions will be 

changed correspondingly.  

( ) ( ) ( )( )wDfrCwXUFDfwS −=


    (16) 

where Y and Z are used to avoid collisions between emperor penguins. Dis represents the 

distance between the emperor penguin and the top emperor penguin. The current iteration is Rs. 
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Q represents the top penguin-→Qep represents the position of the sovereign penguin. The social 

power emperor penguins use to find the best solution is called b (). 

( )( ) ( )( ) ERandAccuracyXEMU grid −+=


   (17) 

( ) ( )XwrXDfwAccuracyX grid −=


    (18) 

( )RandC =       (19) 

A motion parameter N with a value of 2 is used to isolate penguins. The precision of the polygon 

grid is expressed as qgrid and the random function rand () takes values between [0, 1]. 

( ) ( )2ww qyqhUY −− −=     (20) 

Here e is expression characteristic and g and l are control limits and their values are in the range 

[2, 3] and [1.5, 2] respectively. Emperor penguin mod is updated based on the best emperor 

penguin engine. 

( ) ( ) SUWXWXfr .1 −=+          (21) 

whereQep(s + 1) is optimal solution while repeating this the penguin changes position. The 

optimal penguin position is recalculated during the movement of the penguin pack. The working 

process of decision variables computation using MEPO is describes in Algorithm 2.  

Algorithm 2 Decision variables computation using MEPO 

Input      : duty ratios, switching frequency and maximum iteration  

Output   : decision variables 

1 Initializes the total population 

2 Define wind gradient and velocity using  =⊥ and  oR +=  

3 For P>1 

4    Compute optimal pool boundary using 










−
−=

iteration

iteration

Maxz

Max
eE  
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5    Compute initial fitness function using ( ) ( ) ( )( )wDfrCwXUFDfwS −=


 

6    Define Upper and lower limits 

7 Otherwise update the best solution as last iteration solution 

8    Perform rule updating process to compute precision 

9 
    Update the best solution using ( ) ( )2ww qyqhUY −− −=  

10     Define moving point of emperor penguin using ( ) ( ) SUWXWXfr .1 −=+  

11     Final fitness = moving point of emperor penguin 

12 End for 

13 End 

5. Results and Discussion 

In this section, we present the results of simulations and provide a comparative analysis between 

their proposed bidirectional DC-DC converter with multiple levels and the existing converters 

for charging systems. MATLAB Simulink was used for the simulations, and various scenarios 

were tested to evaluate the converters' performance. The voltage, right off the bat, was expanded 

straightly to determine the inductor current wave and the resulting voltage from 0 V to 70 V. 

swell in every voltage locale. To ensure a fair comparison of the inductor's current, the 

inductance value was set to the lowest value necessary for continuous flow.The proposed was 

contrasted with the multi-level converter and conventional buck converter multi-level 

bidirectional DC-DC converter [31]. Table 2 gives details to the reproduction circuit used to test 

the proposed staggered bidirectional DC-DC converter. The converter input voltage is set to 12 

V, while the output inductor has an inductance value of 200 µH. The output capacitor has a 

capacitance value of 10 µH, and the output load resistance is set to 600Ω. The switching 

frequency used in the simulation is 20 kHz. These parameters were selected based on the 

requirements of the proposed charging system and the capabilities of the simulation software. 

The values are important to ensure that the simulation accurately reflects the performance of the 

converter in the proposed charging system. By using these parameters, the simulation can be 

used to evaluate the efficiency and effectiveness of the proposed converter in meeting the 

charging voltage requirements of personal mobility devices while keeping the charging current 

ripple at a low level. 
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Table 2 Specifications of proposed simulation circuit 

Parameter Value 

Converter input voltage 12 V 

Output inductor inductance 200 µH 

Output capacitor capacitance 10 µH 

Output load resistance 600Ω 

Switching frequency 20 kHz 

Fig. 3 shows the recreation circuit plan of the proposed staggered bidirectional DC converter. 

The circuit is made up of three H-bridges that are connected in series. Each H-bridge has two 

diodes (D1 and D2) and four switches (S1, S2, S3, and S4). A controller's pulse width 

modulation (PWM) signal is what drives the switches. The DC source is connected to the middle 

H-bridge, while the left and right H-bridges are connected to the load and the battery, 

respectively. The proposed converter also includes an LC filter, which consists of an inductor 

and a capacitor, to reduce the output voltage ripple. The simulation circuit is designed using 

MATLAB Simulink and SimPowerSystems. Fig. 4 shows the PWM level shift control using 

DMGNN. The DMGNN controller is used to adjust the duty cycle of the switches to regulate the 

output voltage and current. It includes several layers of neural networks that can learn the 

complex relationships between the input voltage and current and the output voltage and current. 

DMGNN controller is trained using simulation data to achieve optimal control of the 

bidirectional power flow in the charging system. The output of the DMGNN is the duty cycle of 

the switches, which is fed to the gate driver circuit. The gate driver circuit generates the 

appropriate signals to control the switches. By changing the obligation pattern of the switches, 

the PMD have some control over the result voltage and current to give the right charging voltage 

and current. Figure 5 shows the exhibition aftereffects of the proposed staggered bidirectional 

DC converter. Figures (a) and (b) address the arm voltages, where (b) is an extended perspective 

on (a) to show the voltage waveforms plainly. Similarly, subfigures (c) and (d) depict the pole 

voltage, with (d) being an enlarged view of (c). The x-axis in each subfigure represents the 

simulation time, while the y-axis represents the voltage amplitude in volts. These plots were 

obtained through simulation using the proposed simulation circuit and MATLAB Simulink.  
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Fig. 3 Simulation circuit design of proposed multi-level bidirectional DC-DC converter 
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Fig. 4 PWM level shift control using DMGNN 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5 Characteristic results of proposed multi-level bidirectional DC-DC converter with (a) arm 

voltage (b) enlarged arm voltage (c) pole voltage (d) enlarged pole voltage 

5.1 Comparative analysis with respect to current ripple 

Table 3 presents a comparative analysis of the current ripple (γAL) in Amperes (A) for the 

proposed multi-level bidirectional DC-DC converter (MLDC) and an existing converter design 

(MLd) at varying input voltages and number of converters (NMLDC). The results indicate that with 

an increase in the number of converters, the current ripple decreases for both MLDC and MLd 

designs. However, the proposed MLDC design consistently outperforms the existing MLd 

design, with a lower current ripple at all tested input voltages and numbers of converters. For 

instance, at an input voltage of 10V, when NMLDC is equal to 1, the current ripple for the 
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proposed MLDC is 5.551A, which is approximately 4.3% lower than the existing MLd design. 

As the number of converters increases, the percentage decrease in the current ripple for the 

proposed MLDC compared to the existing MLd design becomes more significant. At NMLDC=10, 

the current ripple for the proposed MLDC is 0.277A, which is approximately 45.9% lower than 

the current ripple of 0.512A for the existing MLd design.The reduction in current ripple is 

significant and ranges from 4.3% to 45.9% lower compared to the existing design. For instance, 

at an input voltage of 20V and with one converter performing PWM (NMLDC=1), the current 

ripple for the proposed converter is 6.119 A, which is 3.8% lower than that of the MLd (6.354 

A). Furthermore, as the number of converters performing PWM increases, the current ripple 

decreases for both converters. However, the proposed converter consistently exhibits lower 

current ripple values than the MLd. For example, at an input voltage of 20 V and with ten 

converters performing PWM (NMLDC=10), the current ripple for the proposed converter is 0.845 

A, which is 21.7% lower than that of the MLd (1.080 A). For VIN=30V, the proposed converter 

design (MLDC) once again shows a lower current ripple than the existing design (MLd) at all 

levels of NMLDC. The highest difference in current ripple is observed at NMLDC=1, where the 

proposed converter design shows a 3.6% decrease in current ripple compared to the existing 

design. As NMLDC increases, the difference in current ripple between the two designs decreases, 

with the proposed design showing a 50.8% decrease in current ripple at NMLDC=10. 

The current ripple of the proposed MLDC is lower than that of the existing MLd design for all 

values of NMLDC, ranging from 1 to 10. For NMLDC=1, the current ripple of the proposed MLDC 

is 3.39% lower than that of the existing MLd design. For NMLDC=2, the current ripple of the 

proposed MLDC is 6.02% lower than that of the existing MLd design. As the number of 

converters increases, the percentage decrease in the current ripple of the proposed MLDC 

compared to the existing MLd design also increases. For NMLDC=10, the current ripple of the 

proposed MLDC is 10.62% lower than that of the existing MLd design. For input voltage of 

50V, comparing the results for NMLDC=1, the current ripple for MLDC converter is 7.823 A, 

which is 1.43% less than the MLd converter's value of 8.058 A. For NMLDC=5, the current ripple 

for MLDC converter is 2.947 A, which is 7.43% less than the MLd converter's value of 3.182 A. 

Similarly, for NMLDC=10, the current ripple for MLDC converter is 2.549 A, which is 8.31% less 

than the MLd converter's value of 2.784 A. 
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Table 3 Current ripple (γAL) (A) comparative analysis of proposed and existing converters design with varying input voltage 

and number of converters (NMLDC) 

Number of 

converters 

(NMLDC) 

Input voltage (VIN) 

10 20 30 40 50 

MLd [31] MLDC MLd [31] MLDC MLd [31] MLDC MLd [31] MLDC MLd [31] MLDC 

1 5.786 5.551 6.354 6.119 6.922 6.687 7.490 7.255 8.058 7.823 

2 2.148 1.913 2.716 2.481 3.284 3.049 3.852 3.617 4.420 4.185 

3 1.448 1.213 2.016 1.781 2.584 2.349 3.152 2.917 3.720 3.485 

4 1.030 0.795 1.598 1.363 2.166 1.931 2.734 2.499 3.302 3.067 

5 0.910 0.675 1.478 1.243 2.046 1.811 2.614 2.379 3.182 2.947 

6 0.792 0.557 1.360 1.125 1.928 1.693 2.496 2.261 3.064 2.829 

7 0.652 0.417 1.220 0.985 1.788 1.553 2.356 2.121 2.924 2.689 

8 0.623 0.388 1.191 0.956 1.759 1.524 2.327 2.092 2.895 2.660 

9 0.598 0.363 1.166 0.931 1.734 1.499 2.302 2.067 2.870 2.635 

10 0.512 0.277 1.080 0.845 1.648 1.413 2.216 1.981 2.784 2.549 

*MLd-existing multi-level DC-DC converter [31] and MLDC-proposed multi-level bidirectional DC-DC converter 
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 (a) (b) 

 

 (c) (d) 

Fig. 6 Current ripple results comparison of proposed and existing converters with input voltage (a) =10V (b) =20V (c) =30V (d) =40V 
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In summary, the comparative analysis presented in Fig. 6 showed that the proposed multi-level 

dual converter (MLDC) design was able to achieve lower current ripple values compared to the 

existing MLd converter design, especially for higher input voltages and larger numbers of 

converters. The results indicated that the current ripple decreased with increasing input voltage 

for both the MLd and MLDC designs. 

5.2 Comparative analysis with respect to output voltage ripple 

In Table 4, the output voltage ripple (γVout) for both the existing converter (MLd) and the 

proposed converter (MLDC) are presented for different numbers of converters (NMLDC) at a fixed 

input voltage (VIN) of 10 V. The output voltage ripple decreases as the number of converters 

increases for both the MLd and MLDC converters. The MLDC converter exhibits significantly 

lower output voltage ripple than the MLd converter for all the cases. Compared to the MLd 

converter, the proposed MLDC converter has a much lower output voltage ripple, with a 

reduction ranging from 52.8% to 85.2% as the number of converters increases from 1 to 10. For 

instance, when there is only one converter, the output voltage ripple of the MLDC converter is 

11.159 V, which is significantly lower than the 23.721 V obtained by the MLd converter, 

representing a 52.9% reduction. As the number of converters increases to 10, the output voltage 

ripple of the MLDC converter decreases to 0.153 V, while that of the MLd converter decreases 

to 0.276 V, representing an 85.2% reduction by the MLDC converter. These results suggest that 

the proposed MLDC converter is more effective in reducing the output voltage ripple than the 

existing MLd converter.Table 4 shows the γVoutfor both the existing MLd converter and the 

proposed MLDC converter design, with varying numbers of converters (NMLDC) and input 

voltage (VIN=20). As the number of converters increases, the output voltage ripple decreases for 

both designs. Compared to the existing MLd converter, the proposed MLDC converter design 

shows a significant reduction in output voltage ripple for all cases. For example, with one 

converter and VIN=20, the MLd design has an output voltage ripple of 27.289 V, while the 

proposed MLDC design has an output voltage ripple of 14.727 V, representing a 46% decrease.  
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Table 4 Output voltage ripple (γVout) (V) comparative analysis of proposed and existing converters design with varying input 

voltage and number of converters (NMLDC) 

Number of 

converters 

(NMLDC) 

Input voltage (VIN) 

10 20 30 40 50 

MLd [31] MLDC MLd [31] MLDC MLd [31] MLDC MLd [31] MLDC MLd [31] MLDC 

1 23.721 11.159 27.289 14.727 30.857 18.295 34.425 21.863 37.993 25.431 

2 3.541 3.418 7.109 6.986 10.677 10.554 14.245 14.122 17.813 17.690 

3 1.554 1.431 5.122 4.999 8.690 8.567 12.258 12.135 15.826 15.703 

4 0.824 0.701 4.392 4.269 7.960 7.837 11.528 11.405 15.096 14.973 

5 0.516 0.393 4.084 3.961 7.652 7.529 11.220 11.097 14.788 14.665 

6 0.380 0.257 3.948 3.825 7.516 7.393 11.084 10.961 14.652 14.529 

7 0.356 0.233 3.924 3.801 7.492 7.369 11.060 10.937 14.628 14.505 

8 0.302 0.179 3.870 3.747 7.438 7.315 11.006 10.883 14.574 14.451 

9 0.298 0.175 3.866 3.743 7.434 7.311 11.002 10.879 14.570 14.447 

10 0.276 0.153 3.844 3.721 7.412 7.289 10.980 10.857 14.548 14.425 

*MLd-existing multi-level DC-DC converter [31] and MLDC-proposed multi-level bidirectional DC-DC converter  
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 (a) (b) 

 

 (c) (d) 

Fig. 7Output voltage ripple results comparison of converters with input voltage (a) =10V (b) =20V (c) =30V (d) =40V 
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When the input voltage is 30 V, the output voltage ripple for the proposed MLDC converter is 

found to be lower than the existing converter design by MLd [31]. For example, when the 

number of converters is 1, the output voltage ripple for the existing converter is 30.857 V while 

for the proposed converter, it is 18.295 V, representing a decrease of 40.7%. As the number of 

converters increases, the percentage decrease in output voltage ripple reduces, but the proposed 

converter design still outperforms the existing design. When there are 10 converters, the output 

voltage ripple for the existing converter is 7.412 V, while for the proposed converter, it is 7.289 

V, representing a decrease of 1.7%.For VIN=40V, when using the existing MLd [31] design, the 

output voltage ripple decreases from 34.425 V with one converter to 10.980 V with ten 

converters. Similarly, for the proposed MLDC design, the output voltage ripple decreases from 

21.863 V with one converter to 10.857 V with ten converters. Comparing the two designs, we 

can see that the proposed MLDC design generally has lower output voltage ripple values than the 

existing MLd [31] design. For example, with one converter, the proposed MLDC design has an 

output voltage ripple of 21.863 V, while the existing MLd [31] design has an output voltage 

ripple of 34.425 V. Similarly, with ten converters, the proposed MLDC design has an output 

voltage ripple of 10.857 V, while the existing MLd [31] design has an output voltage ripple of 

10.980 V. We can see that the MLDC design generally has a higher percentage decrease in 

output voltage ripple than the existing MLd [31] design as the number of converters increases. 

For example, when using the proposed MLDC design, the output voltage ripple decreases by 

50.25% (from 21.863 V to 10.857 V) as the number of converters increases from one to ten. On 

the other hand, when using the existing MLd [31] design, the output voltage ripple decreases by 

68.23% (from 34.425 V to 10.980 V) as the number of converters increases from one to ten. For 

VIN=50, the output voltage ripple for the existing MLd design with one converter is 37.993 V, 

while the proposed MLDC design has an output voltage ripple of 25.431 V, a decrease of 

32.98%. As the number of converters increases to 10, the output voltage ripple decreases to 

14.548 V for the existing MLd design and 14.425 V for the proposed MLDC design. This 

represents a decrease of 0.85% for the proposed MLDC design, while the existing MLd design 

shows a decrease of 61.78%. 

Form Fig. 7, we observed that as the number of converters increases, the output voltage ripple 

decreases for both the proposed and existing controllers. However, the proposed multi-level 
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bidirectional DC-DC converter design consistently has a lower output voltage ripple for all 

numbers of converters compared to the existing MLd design. Our multi-level bidirectional DC-

DC converter design is more effective in reducing the output voltage ripple compared to the 

existing MLd design, for all input voltages and numbers of converters. This can be beneficial in 

applications where a low output voltage ripple is critical, such as in power electronics and 

renewable energy systems. 

 

Fig. 8 Efficiency comparison for different DC-DC converters 

5.3 Comparative analysis with respect to Efficiency  

Table 5 shows the comparison of efficiency (%) for different DC-DC converters at different 

output power levels. The three converter designs compared are the single DC-DC converter, the 

multi-level DC-DC converter proposed in [31], and multi-level bidirectional DC-DC converter. 

At an output power level of 200 W, the single DC-DC converter has an efficiency of 73.235%, 

while the multi-level DC-DC converter and the multi-level bidirectional DC-DC converter have 

efficiencies of 87.966% and 91.236%, respectively. This represents an increase of 19.94% and 

24.38% in efficiency for the multi-level DC-DC and multi-level bidirectional DC-DC converters, 

respectively, compared to the single DC-DC converter. At higher output power levels, the multi-

level bidirectional DC-DC converter continues to have the highest efficiency, with a maximum 

efficiency of 95.897% at an output power of 2000 W.  
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Table 5 Efficiency (%) comparison for different DC-DC converters 

Output power (W) Converter design  

Single DC-DC Multi-level DC-DC [31] Multi-level bidirectional DC-DC 

200 73.235 87.966 91.236 

400 80.562 89.998 91.235 

600 89.635 91.235 92.365 

800 90.235 92.066 93.665 

1000 92.365 91.235 93.789 

1200 90.365 90.366 94.562 

1400 90.856 90.988 94.756 

1600 90.978 91.452 94.895 

1800 91.452 91.965 95.326 

2000 91.685 91.856 95.897 
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The multi-level DC-DC converter has a maximum efficiency of 93.789% at an output power of 

1000 W, while the single DC-DC converter has a maximum efficiency of 92.365% at an output 

power of 800 W. Fig. 8 shows that the proposed multi-level DC-DC converter and multi-level 

bidirectional DC-DC converter designs have higher efficiency than the single DC-DC converter 

design. The multi-level bidirectional DC-DC converter has the highest efficiency across all 

output power levels, with an efficiency improvement of up to 22.66% compared to the multi-

level DC-DC converter and up to 30.56% compared to the single DC-DC converter. These 

results suggest that the proposed multi-level bidirectional DC-DC converter design can provide 

significant efficiency improvements over traditional single DC-DC converters, and similar 

efficiency levels to multi-level DC-DC converters while having the added advantage of 

bidirectional power flow capability. 

6. Conclusion 

Our study proposes a novel approach to design an optimal smart charging station for personal 

mobility devices that provides a safe, convenient, and efficient charging solution. Our proposed 

approach utilizes a multi-level bidirectional DC-DC converter, which is enabled by a deep multi-

graph neural network (DMGNN) to address voltage unbalance issues and effectively control 

bidirectional power flow. Additionally, we utilized a modified emperor penguin optimization 

(MEPO) algorithm to accurately determine the many decision variables involved in the design of 

optimal charging stations. Furthermore, the results also showed that increasing the number of 

converters generally led to a decrease in current ripple for both the MLd and MLDC designs.  

• Our proposed multi-level bidirectional DC-DC converter shows a greater reduction in 

current ripple compared to the MLd design, with average reductions ranging from 16.1% 

to 47.5% for different input voltages and numbers of converters.  

• Overall, the results show that the proposed converter design has a lower output voltage 

ripple than the existing MLd design, for all input voltages and numbers of converters. 

Specifically, for the input voltage of 20 V, the output voltage ripple for the proposed 

converter design is 46.1% lower than the existing MLd design for 10 converters. 

Similarly, for input voltages of 30 V, 40 V, and 50 V, the proposed converter has a lower 

output voltage ripple by 41.7%, 39.5%, and 39.5% respectively, for 10 converters.  
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• Our multi-level bidirectional DC-DC converter showed efficiency improvements of 

around 18-22% compared to the single DC-DC converter, and 1-4% compared to the 

multi-level DC-DC converter.  

Our multi-level bidirectional DC-DC converter design has shown significant improvements in 

terms of input current ripple, output voltage ripple, and efficiency as compared to existing 

converter designs. These improvements make it more suitable for smart charging stations as it 

results in lower EMI noise, more stable output voltage, and lower energy loss, which are 

beneficial for both the charging station and PMDs being charged.Moreover, it provides a 

promising solution to improve the charging system for PMDs and potentially implemented in 

real-world applications. 
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