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ABSTRACT

The climate and Earth sciences have recently undergone a
rapid transformation from a data-poor to a data-rich envi-
ronment. In particular, massive amount of data about Earth
and its environment is now continuously being generated
by a large number of Earth observing satellites as well as
physics-based earth system models running on large-scale
computational platforms. These massive and information-
rich datasets offer huge potential for understanding how the
Earth’s climate and ecosystem have been changing and how
they are being impacted by humans actions. We discuss the
challenges involved in analyzing these massive data sets as
well as opportunities they present for both advancing machine
learning as well as the science of climate change.
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1 OPPORTUNITIES FOR BIG DATA

Climate science has experienced a rapid transformation from
a data-poor to a data-rich phase in the last few decades, with
data from Earth-observing satellites launched by organiza-
tions such as NASA, SpaceX, and European Space Agency
(ESA), and massive volumes of data from model simulations
that are being generated by multiple groups of climate sci-
entists across the world. The growing size and richness of
climate data provide numerous opportunities for data science
to improve our understanding of the Earths climate. They
also provide answers to some of the pressing questions related
to climate change mitigation and adaptation [18, 19].

First, data science methods can play a major role in discov-
ering key climatic processes such as teleconnections, which
represent pairs of distant regions in the world that show
coupled climate activity. A well-known example of such phe-
nomena is the El-Nino Southern Oscillation in the West
Pacific Ocean. Automated discovery of teleconnections using
data science methods (e.g., recent network-based algorithms
[12]) can help us discover previously unknown phenomena
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Figure 1: Examples of changes identified by our
global surface water monitoring system (green in-
dicates loss of water and red indicates gain in water
in the last 15 years). This includes river migrations
in floodplains of Peru (possibly aided by increased
soil erosion due to deforestation in the Amazonian
tropical forests), expanding glacial lakes in Tibet
due to melting glaciers, declining water supplies in
drought-stricken lakes of California and Cambodia,
and increasing constructions of dams and reservoirs
in Brazil and around the world that have a variety of
ecological impacts. (Image backgrounds are courtesy
of Bing Aerial Imagery.)

in climate[15, 16]. We can also use data science methods to
identify relationships in climate science that exist beyond
pairs of regions such as tripoles [3, 14]. Insights gained from
such analyses can also help in evaluating and refining climate
models based on their ability to reproduce vital climatic
processes.

Second, the vast amount of remote sensing data being
collected by Earth-observing satellites can help us monitor
critical environmental resources and their interactions with
the changing climate. Some examples include monitoring the
dynamics of surface water bodies [2, 13] that are impacted
by changing climate and human actions (Figure ??), map-
ping tropical forest fires [1, 17] that are one of the major
contributors of greenhouse gas emissions worldwide, moni-
toring conversions of tropical forests to oil palm plantations
[8–10] and understanding how extreme rainfall patterns are
impacted by climate change [6].
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2 CHALLENGES AND RESEARCH
NEEDS

Although big data in climate offers numerous research op-
portunities and the data science community is increasingly
becoming eager to explore applications in climate domains
[7], there are a number of challenges in utilizing the full po-
tential in climate data for accelerating scientific discovery,
relative to the level of success achieved by data science in
the commercial arena.

One challenge is that, while traditional data science algo-
rithms are designed for handling well-defined objects, such
as items bought in market-basket transactions or lists of
friends in social networks, objects of interest in climate sci-
ence often appear as loosely defined patterns in continuous
space-time fields that evolve over space and time. For exam-
ple, ocean eddies (swirling bodies of water and nutrients in
the ocean) appear as changes in sea surface height data with
loose boundaries around their edges.

Another challenge is that climate science problems often
involve the complex nature of relationships among physi-
cal variables that are difficult to extract from the limited
number of climate records. For example, high-quality sensor
measurements of climate variables on a global scale are only
available for the recent past (40 to 100 years). This limits
the usefulness of several state-of-the-art data science algo-
rithms such as deep learning, whose success in speech and
image recognition problems have been greatly enabled by the
internet-scale availability of data in these domains. In fact,
black-box data science methods, that are oblivious to the
rich understanding of the physical processes driving climatic
phenomena, have met with limited success in climate science
[4].

To fully capitalize the power of big data for accelerating
scientific discovery in the domain of climate, there is an
increasing interest in developing a systematic way of integrat-
ing climate science knowledge in state-of-the-art data science
algorithms. This theory-guided data science paradigm [5, 11]
is expected to be a key enabler in advancing our knowledge
of the Earths climate system and informing adaptation and
mitigation policies related to combating climate change.
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